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ABSTRACT
Spatial generalized linear mixed effects models are popular in spatial or spatiotemporal data analysis when
the responses are counts and the random effects are modeled by multivariate normal distributions. Direct
computation of the MLEs of model parameters is impossible because the likelihood functions contain
high-dimensional intractable integrals. To overcome the difficulty, a new method called the prediction-
maximization algorithm is proposed. The method has a maximization step for the MLEs of spatial linear
mixed effects models for normal responses and a prediction step for the prediction of the random effects.
None of them involves high-dimensional intractable integrals. Because only algorithms for the normal
responses are needed, the derivation of the MLEs of a spatial generalized linear mixed effects model for count
responses by the proposed method is not computationally harder than a model for normal responses. The
simulation study shows that the performance of the proposed method is comparable to that of the previous
maximum likelihood algorithms formulated by high-order Laplace approximations and is better than that
of Bayesian methods formulated by MCMC algorithms. Supplementary materials for this article are available
online.
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1. Introduction

Spatial generalized linear mixed effect models (SGLMMs),
introduced by Diggle, Tawn, and Moyeed (1998) named as
model-based geostatistics, are popular in the analysis of non-
Gaussian spatial data collected from a geological or geographical
region. Theoretically, an SGLMM can be treated as a special
case of a generalized linear mixed effects model (GLMM)
when the random effects are modeled by a spatial Gaussian
process. Conditional on the spatial Gaussian process, the
response variables are assumed to follow an exponential family
distribution with site-specific conditional expected values. A
link function connects the site-specific conditional expected
values with the underlying spatial Gaussian process. Except the
case when the response follows a normal distribution given the
process, the likelihood function of the SGLMM in the remaining
cases contains high-dimensional intractable integrals (HDIIs),
leading to difficulties in the derivation of the exact MLEs of
model parameters. To overcome the difficulties, numerical
approximations of HDIIs are often used. Examples include
the well-known Laplace Approximation (LA) (Barndorff-
Neilsen and Cox 1989) and the Penalized Quasi-Likelihood
(PQL) (Breslow and Clayton 1993) methods. It is believed that
numerical approximations have to be used in the derivation of
the approximate MLEs. The main contribution of the article is
the development of the PM algorithm for the MLE of SGLMMs
for count responses without the numerical approximations,
which resolves the long-standing difficulties caused by the HDII
problems in fitting SGLMMs.

CONTACT Tonglin Zhang tlzhang@purdue.edu Department of Statistics, Purdue University, 250 North University Street, West Lafayette, IN 47907-2066.
Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JCGS.

The proposed PM method has a prediction step for the
prediction of the random effects and a maximization step for
the MLE of spatial linear mixed effects models (SLMMs) for
normal responses. None of them needs numerical evaluations of
HDIIs. Thus, HDIIs are not an issue in the proposed method. In
particular, suppose that count responses are collected at sites in a
spatial (or spatiotemporal) domain. Assume that an exponential
family distribution is used to model the response given the
random effects and a spatial Gaussian process is used to model
the underlying distribution of the random effects. Then, the
likelihood function of the SGLMM contains HDIIs, which is
the major difficulty in the computation of the MLEs of the
model parameters. This is not an issue in SLMMs for normal
responses because the likelihood functions have closed-form
expressions. Our work shows that the MLE of the SGLMM
for count responses can be derived by iteratively using ML
algorithms for SLMMs. It is not necessary to treat any HDIIs in
the entire computation. The derivation of the MLEs of SGLMMs
for count responses is not computationally harder than that
of SLMMs for normal responses. Theoretically, our method is
asymptotically equivalent to the exact MLE, meaning that

√
n

times the difference between the solution provided the PM and
the exact MLE is asymptotically negligible (i.e., Corollary 2).

The idea of the PM is motivated by the relationship
between the hierarchical-likelihood (i.e., h-likelihood) (Lee and
Nelder 1996) and the likelihood approaches. The h-likelihood
function is the conditional likelihood of the responses given
the random effects. The likelihood function is the marginal
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likelihood obtained by integrating out the random effects. In
the h-likelihood approach, the random effects are assumed to
be observed. They can be used in the derivation of the MLEs.
The computation can be carried based on the h-likelihood
function, but this is not a usable approach in practice. The
likelihood approach, which is the usable approach, assumes
that the random effects are unobserved. The computation has
to be carried out based on the likelihood function. HDIIs
appear in the likelihood function for counts responses when
the random effects are modeled by normal distributions. To
overcome the difficulty, a straightforward method is to impute
the random effects by the EM-algorithm (Dempster, Laird, and
Rubin 1977). In the E-step, the EM-algorithm calculates the
expected value of the logarithm of the h-likelihood conditioning
on the logarithm of the likelihood, implying that HDIIs are still
present. Therefore, the EM is often carried out by a Monte Carlo
EM (MCEM) algorithm (Zhang 2002; Guan 2021).

The HDII problem can be completely avoided in the pro-
posed PM. To formulate the PM, we examine the algorithm for
the h-likelihood approach. Because it assumes that the random
effects are observed, the MLEs of fixed effects parameters can
be computed by the standard iteratively reweighted least squares
(IRWLS) algorithm, and the MLEs of the variance components
parameters can be computed by maximizing the likelihood func-
tion of the random effects specified by the prior distribution.
None of them involve HDIIs. In the working models considered
by the iterations of the h-likelihood approach, the random effects
appear in three places: the linear components, the working
weights, and the working responses. The working weights and
the working responses are constructed by the previous iteration.
Only the random effects contained by the linear components are
used in the current iteration. The roles of the random effects
can be classified into two groups. The first group contains the
linear components only. The second group contains the work-
ing weights and responses. We migrate this idea to SGLMMs,
leading to the proposed PM. The PM is analogous to the EM.
Both the P-step of the PM and the E-step of the EM predict the
random effects. The difference is that the PM does not use the
conditional expected value of the logarithm of the h-likelihood
given the logarithm of the likelihood. The PM is identical to the
EM only when the responses are normal.

The PM has connections with the recently developed itera-
tively reweighted least squares with random effects (IRWLSR)
for the MLE of generalized linear mixed models (GLMMs) (Zhang
2021). Our research shows that the usage of the redundant
dispersion parameter (for the variance of the errors) used by
the iterations of the IRWLSR can cause the resulting estimators
inconsistent. The redundant dispersion parameter should be
excluded in the iterations to stabilize the computation. As
all of linear mixed models for normal responses contain the
dispersion parameter, it is impossible to directly use existing
software packages to implement the PM. We need to write new
computer code to remove impact of the redundant dispersion
parameter used by the iterations. This can lead to a more reliable
approach, leading to consistency of the proposed PM.

SGLMMs are special cases of GLMMs. The random effects of
SLMMs are specified for spatial or spatiotemporal dependencies.
GLMMs contain all scenarios of mixed effects models when
the responses are modeled by exponential family distributions.

It is well-known that the main difficulty in fitting GLMMs
for count responses is computational because the likelihood
function contains intractable integrals (IIs). To overcome the
difficulty, numerical evaluations of the IIs are often used in
previous methods. Examples include the penalized quasi-
likelihood (PQL) (Breslow and Clayton 1993; Breslow and Lin
1996), the Gauss–Hermite quadrature (Liu and Pierce 1994), the
Laplace approximation (LA) (Barndorff-Neilsen and Cox 1989;
Evangelou, Zhu, and Smith 2011), and the integrated nested
Laplace approximation (INLA) (Rue, Martino, and Chopin
2009). Bayesian methods developed under the Markov chain
Monte Carlo (MCMC) or the Metropolis-Hasting algorithms are
also used. Examples include the MCEM gradient (McCulloch
1997) and the Gibbs sampler (Zeger and Karim 1991). To
handle large matrices in MCMC, an effort has been put into
the combination C++ and R packages. Examples include the
mcemGLM,geoCount (Jing and Oliveira 2015),gcKrig (Han
and Oliveria 2018), and spaMM (Rousset 2021) packages of R.

SGLMMs is one of the hardest cases in GLMMs because
the dimension of intractable integrals increases with the sample
size. This is different from longitudinal data studies, because
they assume that dependencies are only present for observa-
tions within clusters. In SGLMMs, dependencies have to be
considered between all observations in the data, leading to dif-
ficulties in MCMC and many simulation-based methods for
the computation of the MLEs (Best and Wakefield 1999; Shun
and McCullagh 1995). The proposed PM approach successfully
overcomes the difficulties.

The article is organized as follows. In Section 2, we introduce
our method. In Section 3, we compare our method with our
competitors via Monte Carlo simulations. In Section 4, we apply
our method to a real world dataset. In Section 5, we provide a
discussion. We put all proofs in the Appendix, supplementary
materials.

2. Method

We review the definition of SGLMMs in Section 2.1. We intro-
duce our method in Section 2.2. We compare our method to a
few well-known SGLMMs in Section 2.3.

2.1. SGLMM

Let y = (y1, . . . , yn)� ∈ R
n be an n-dimensional count response

vector collected from n distinct sites in a spatial or spatiotem-
poral domain. Suppose that y follows an exponential family
distribution without the dispersion parameter (e.g., for binomial
or Poisson data), such that its probability mass function (PMF)
can be expressed as

f (y|γ ) = ey∗θ−b(θ)+c(y), (1)
where γ = (γ1, . . . , γn)� ∈ R

n is an n-dimensional
vector for spatial (including spatiotemporal) random effects,
θ = (θ1, . . . , θn)� is an n-dimensional vector, b(θ) =
(b(θ1), . . . , b(θn))� is derived by a real transformation b(·) on
θ , y ∗ θ is the Hadamard product (i.e., element-wise product)
of vectors, and c(y) is the normalizing constant. The SGLMM is
treated as a realization of a spatial count process as

g[μ(s)] = x�(s)β + γ (s), (2)
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where μ(s) = E[y(s)], y(s) is a count response at site s, x(s)
is a p-dimensional vector of explanatory variables at site s, β

is a p-dimensional parameter for fixed effects, and γ (s) is an
observed (i.e., latent) spatial Gaussian process. Let yi = y(si)
and xi = x(si) be the response and explanatory variable values
observed at site si for i = 1, . . . , n, respectively. The SGLMM
can be equivalently expressed as

g(μ) = g[b′(θ)] = η = Xβ + γ , (3)

where X = (x�
1 , . . . , x�

n )� is an n×p design matrix for explana-
tory variables given by the realization and γ = (γ1, . . . , γn)�
with γi = γ (si) is the vector of the spatial random effects.
By (1), we have μ = (μ1, . . . , μn)� = b′(θ) = E(y|γ ) and
cov(y|γ ) = diag{b′′(θ)} with μi = b′(θi) = E(yi|γ ) and
V(yi|γ ) = b′′(θi). The prior distribution for γ in (3) is

γ ∼ N (0, �ω), (4)

where ω ∈ R
q is the parameter vector in variance components

provided by the spatial Gaussian process γ (s) of (2). In (4), �ω

can be specified by the geostatistical (GEO) (Diggle, Tawn, and
Moyeed 1998), the spatial autoregressive (SAR) (Ork 1975), or
the conditional autoregressive (CAR) (Besag 1974; Cressie and
Chan 1989) models. This is discussed in Section 2.3.

The SGLMM jointly defined by (1), (3), and (4) can be
interpreted by spatial hierarchical models with two hierarchical
levels. The first level, given by (1) and (3), specifies the con-
ditional distribution of the response given the random effects.
The second level, given by (4), specifies the distribution of the
random effects. The choice of the multivariate normal distribu-
tion for γ is convenient in modeling spatial or spatiotemporal
dependencies.

The h-likelihood (Lee and Nelder 1996) is given by the joint
distribution of y and γ as

Lh(β , ω) = fh,βω(y, γ )

= ey∗θ−b(θ)+c(y)(2π)−
n
2 [det(�ω)]− 1

2 e− 1
2 γ ��−1

ω γ ,
(5)

where fh,βω(y, γ ) is the joint probability mass function (PMF)-
probability density function(PDF) of y and γ . This is used to
compute the conditional MLEs of β and ω given γ , leading to

(β̂
�
h,γ , ω̂�

h,γ )� = argmin
β ,ω

�h(β , ω), (6)

where �h(β , ω) = log Lh(β , γ ) is the h-loglikelihood function.
If γ is unobserved, then the computation of the MLEs has to be
carried out based on the likelihood as

L(β , ω) = fβω(y) =
∫
Rn

Lh(β , ω)dγ =
∫
Rn

fh,βω(y, γ )dγ

=
∫
Rn

e�h(β ,ω)dγ , (7)

where fβω(y) is the marginal PMF of y. This is used to compute
the MLEs of β and ω by

(β̂
�

, ω̂�
)� = argmax

β ,ω
�(β , ω), (8)

where �(β , ω) = log L(β , ω) is the loglikelihood function. The
conditional (i.e., the posterior) PDF of γ given y is fc(γ |y) =
fh,βω(y, γ )/fβω(y).

The high-dimensional integral on the right-hand side of (7)
is intractable if (1) is used to model the count responses and (4)
is used to model the random effects. In this case, direct imple-
mentation of (8) is hard. Numerical evaluations of the HDIIs
are often used. One of the most popular methods is the Laplace
Approximation (LA). The idea of LA is to replace the integral
by a Taylor expansion around the maximizer (i.e., mode) of the
integrand. LA has also been used in the Bayesian approach for
approximating posterior expectations. Two well-known meth-
ods under LA are the PQL (Breslow and Clayton 1993) and the
INLA (Rue, Martino, and Chopin 2009). Because the simple ver-
sion of the PQL, which only uses the first-order Taylor expansion
to approximate the HDII, contains asymptotic biases (Breslow
and Lin 1996; Lin and Breslow 1996), it is not recommended
in practice (McCulloch, Searle, and Neuhaus 2008, p. 341). To
reduce the asymptotic bias, higher-order LA is often used (Evan-
gelou, Zhu, and Smith 2011). This has been incorporated in the
recent developed spaMM package of R.

In addition, MCMC algorithms developed under the
Bayesian framework can be used. These methods contain
concerns because they have a large amount of computational
overhead in their implementations (Fong, Rue, and Wakefield
2010; Zhang 2019). To apply MCMC, one needs to specify a pro-
posal distribution on R

n with the new sample to be accepted by
a probability depending on the old sample, the new sample, and
the proposal distribution. The acceptance probability is usually
low if n is not very small. To solve the problem, the Gibbs sam-
pler is proposed (Zeger and Karim 1991). Instead of updating
the entire parameter vector simultaneously, the Gibbs sampler
updates individual components conditioning on the remaining
components. This means that it needs to compute the inverse of
a sub-matrix of the variance-covariance matrix of the random
effects and its determinant. As the inverse and the determinant
depend on the parameters, the implementation of MCMC to
SGLMMs is time-consuming and the result is usually unstable.

Our research indicates that numerical evaluations of the
HDII on the right-hand side of (7) are not necessary. Our idea
is motivated by a recent article for MLE of GLMMs in general
exponential family distributions (Zhang 2021). The previous
method contains a dispersion parameter in its iterations. This
does not occur in the proposed PM. Our study shows that the
PM is more reliable than the IRWLSR in fitting SGLMMs. We
introduce our method in the following section.

2.2. Maximum Likelihood Algorithm

We calculate the first-order Taylor expansion of yi at μi and
obtain yi ≈ μi + (∂μi/∂ηi)[g−1(yi) − ηi], leading to the
definition of the ith component of the working response vector
zβγ as

ziβγ = ηi + (yi − μi)(∂ηi/∂μi), (9)
where ηi is the ith component of η. By (1), we have E(ziβγ |γ ) =
ηi and V(ziβγ |γ ) = (∂ηi/∂μi)2b′′(θi), leading to the definition
of the working weight matrix as

Wβγ = diag(w1βγ , . . . , wnβγ ), (10)
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where w−1
iβγ = (∂ηi/∂μi)2b′′(θi). Using η = E(zβγ |γ ) = Xβ +

γ and cov(zβγ |γ ) = W−1
βγ , we obtain the initial working model

by treating zβγ as a normal random vector. Although the true
distribution of zβγ is not normal, we can still use the normal
likelihood to estimate the parameters because this is a consistent
method (Zhang 2019). A difficulty is that both zβγ and Wβγ

depend on β and γ . We address this issue by a modification.
Note that β and γ appear in three places of the initial working
model: the linear component η = Xβ+γ , the working response
vector zβγ , and the working weight matrix Wβγ . We propose
our modification by treating β and γ as fixed in zβγ and Wβγ .
We replace β and γ contained by zβγ and Wβγ with β̃ and γ̃ ,
respectively, in our notations. We obtain the working model in
our PM as

z
β̃γ̃

= Xβ + γ + ε, (11)

where the distribution of γ is given by (4), E(ε) = 0, and
cov(ε) = W−1

β̃γ̃
. We assume that β̃ and γ̃ have been derived

by the previous step of the iterations, meaning that both z
β̃γ̃

and W
β̃γ̃

are assumed to be known in fitting (11) in the current
iteration. We show that this is appropriate.

Our method is identical to the h-likelihood approach when
γ is observed. We use it to compute the MLEs of β and ω given
γ of (11) defined as

(β̂
�
h,β̃γ̃ , ω̂�

h,β̃γ̃
)� = argmax

β ,ω
�h,β̃γ̃

(β , ω), (12)

where �h,β̃γ̃
(β , ω) is the h-loglikelihood function of (11) derived

by assuming ε ∼ N (0, W−1
β̃γ̃

). Although β̂h,β̃γ̃
and ω̂h,β̃γ̃

are

different from β̂h,γ and ω̂h,γ given by (6) in general, respectively,
they can be the identical in special cases.

Theorem 1. If the root of the score function of �̃h,β̃γ̃
(β , ω) as a

function of β and ω is unique for any fixed β̃ and γ̃ , then β̂h,γ =
β̂h,β̃γ̃

and ω̂h,γ = ω̂h,β̃γ̃
when β̃ = β̂h,γ and γ̃ = γ .

Theorem 1 points out that (β̂
�
h,γ , ω̂�

h,γ )� given by (6) is a
stationary point of the numerical algorithm formulated by (12).
This provides a method to compute the MLEs of β and ω under
the h-likelihood approach. Based on initial guesses of β̂h,γ and
ω̂h,γ , we calculate β̂h,β̃γ

and ω̂h,β̃γ
by (12). We treat them as

the next guesses of β̂h,γ and ω̂h,γ . By iterating the procedure, we
obtain the exact values of β̂h,γ and ω̂h,γ .

Our interest is the likelihood approach but not the h-
likelihood approach. We modify the algorithm such that it can
be used to compute β̂ and ω̂ given by (8) under the likelihood
approach. The idea is to predict γ . In particular, we use the
likelihood function of (11) as

L
β̃γ̃

(β , ω) = (2π)−
n
2 [det(Vω,β̃γ̃ )]− 1

2

exp
{
−1

2
(z�

β̃γ̃
− Xβ)�V−1

ω,β̃γ̃
(z

β̃γ̃
− Xβ)

}
,

(13)

where V
ω,β̃γ̃

= �ω+W−1
β̃γ̃

, which is derived by integrating out γ
from the h-loglikelihood. Then, we obtain a modification of (12)
as

(β̂
�
β̃γ̃ , ω̂�

β̃γ̃
)� = argmax

β ,ω
�
β̃γ̃

(β , ω), (14)

where �
β̃γ̃

(β , ω) = log L
β̃γ̃

(β , ω). Although β̂
β̃γ̃

and ω̂
β̃γ̃

given
by (14) may be different from the true MLEs β̂ and ω̂ given
by (8), the differences can be ignored asymptotically. To show
that this is appropriate, we connect our idea based on (14) to the
EM algorithm at the beginning.

Theorem 2. (Connection to the EM). If γ̃ satisfies log fh,βω(y, γ̃ ) =
Eβω[log fh,βω(y, γ )|y], meaning that it is provided by the E-step
of the EM algorithm in the iterations, then the final answers of
β̂

β̃γ̃
and ω̂

β̃γ̃
given by (14) are identical to the true MLE given

by (8).

Theorem 2 points out that the EM-algorithm can be obtained
by an appropriate formulation of γ̃ . Because fc,γω(γ |y) contains
HDIIs, it is hard to be used in predicting γ . To overcome
the difficulty, we predict γ based on (11) because it is a nor-
mal model and the prediction does not involve any HDIIs. We
obtain a matrix expression for the prediction, leading to the PM
algorithm. Thus, we can treat the proposed PM approach as a
modification of the EM approach. Using this idea, we obtain
Algorithm 1.

Algorithm 1 The Prediction-Maximization (PM) algorithm for
MLEs of SGLMMs

Input: Data from the SGLMM defined by (1), (3), and (4)
Output: MLEs and their variance-covariance matrix
Initialization

1: Let z
β̃γ̃

and W
β̃γ̃

be the same as those adopted by the
traditional IRWLS
Begin Iteration

2: M-Step: Compute β̂
β̃γ̃

and ω̂
β̃γ̃

defined by (14) using
Appendix A

3: P-Step: Predict γ by γ̂
β̂

β̃γ̃
ω̂

β̃γ̃
using Appendix B

4: β̃ ← β̂
β̃γ̃

and γ̃ ← γ̂
β̂

β̃γ̃
ω̂

β̃γ̃

5: Compute z
β̃γ̃

and W
β̃γ̃

by (9) and (10), respectively
End Iteration

6: Compute the variance-covariance matrix of the MLEs using
Appendix C

7: Output

Algorithm 1 has two stages. The first stage is given by Step
1. It provides the initial working responses and weights of (11)
without the need of initial guesses of β̃ and γ̃ . This is emphasized
by a few examples to be introduced in Section 2.3. Although
we use the same initialization of the traditional IRWLS, the
final solution is not sensitive to that. The second stage is the
iterations. It starts from the initial z

β̃γ̃
and W

β̃γ
given by the

first stage. The final output is the approximation of the MLEs of
β and ω. To implement Algorithm 1, we need the prediction and
maximization step. Therefore, we call it the PM algorithm. The
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maximization step is given by Step 2. It is completely formulated
by MLE of SLMMs for normal responses. The prediction step is
given by Step 3. It is carried out by matrix operations. None of
them involve any numerical evaluations of the HDIIs. Therefore,
HDIIs are not an issue in the PM.

The difference between Algorithm 1 and the algorithm pro-
posed by Zhang (2021) is the mathematical formulations for
the M-step and the P-step. The dispersion parameter is not
contained in the iterations of the proposed PM, but it is con-
tained in the iterations of the IRWLSR. This is not critical in
GLMMs for longitudinal count data, but it is critical in SGLMMs
for spatial count data. Thus, the dispersion should be removed
from the iterations, leading to Algorithm 1. We next show that
the estimators provided by our approach and the EM approach
are asymptotically negligible, implying that the PM approach is
asymptotically equivalent to the true MLE approach.

Theorem 3. If α < 1/2, then nα(β̂
β̃γ̃

− β̂h,β̃γ̃
)

P→ 0 and

nα(ω̂
β̃γ̃

− ω̂h,β̃γ̃
)

P→ 0 as n → ∞ under (11).

Theorem 3 shows that the difference between the estimators
given by (12) and (14) is asymptotically negligible, meaning that
we can use (14) to replace (12). This removes numerical issues
for HDIIs given by the right-hand side of (7), meaning that we
only need to provide a formulation to γ by (11), which can be
easily handled. We put the details in Appendices A and B.

We still have two theoretical issues to be addressed. The
first is the difference between the final answers given by Algo-
rithm 1 and β̂h,γ and ω̂h,γ given by the h-likelihood approach.
The second is the derivation of variance-covariance matrix for
the estimator provided by Algorithm 1. We investigate both
issues under the framework of increasing domain asymptotic
theory. We do not expect that the estimators would be consistent
under the fixed (i.e., infill) domain asymptotics due to the work
of Zhang (2004), as the article points out that the exact MLE is
not consistent either. For the first issue, we compare Algorithm 1
with the traditional IRWLS. In particular, let β(t) and ω(t) be the
tth iterated values of β̂ and ω̂ given by Algorithm 1. Let β

(t)
h and

ω
(t)
h be the tth iterated values of β̂h,γ and ω̂h,γ given by the tradi-

tional IRWLS in the h-likelihood approach. The initial working
responses and weights in (11) are identical. We immediately
conclude that nα(β(0) −β

(0)

h )
P→ 0 and nα(ω(0) −ω

(0)

h )
P→ 0 for

any α < 1/2 by Theorem 3. The working responses and weights
are difference in Algorithm 1 for the likelihood approach and the
traditional IRWLS for the h-likelihood approach. We evaluate
this and summarize our finding in the following theorem.

Theorem 4. Assume that

(i) the domain of (β�, ω�)� is compact, and the true
(β�, ω�)�, denoted by (β�

0 , ω�
0 )�, belongs to the interior

of the domain;
(ii) there exists a function K(y) such that E|K(y)| < ∞ and

n−1{log �h,β̃ω̃
(β , ω) − log �h,β̃ω̃

(β0, ω0)} ≤ K(y)

for all y, X, β̃ , β , ω̃, and ω in their domains;

(iii) there exists a function ψ
β̃ω̃

(β , ω) not dependent on y, X,
and γ , such that

P

{
lim

n→∞ sup
θ ,ω

∣∣∣∣ 1
n
�h,β̃ω̃

(β , ω) − ψ
β̃ω̃

(β , ω)

∣∣∣∣ = 0

}
= 1.

Then, nα(β(t) − β
(t)
h )

P→ 0 and nα(ω(t) − ω
(t)
h )

P→ 0 for any
α < 1/2.

Conditions (i) and (ii) are the usual conditions and for con-
sistency and asymptotic normality of the MLE (Ferguson 1996,
theorems 17, 18). Condition (iii) is modified from the usual con-
ditions for the same problem (Ferguson 1996, theorem 16). Con-
dition (iii) is usually satisfied when strong mixing conditions for
weak dependency are satisfies (Rosenblatt 1984). It is an appro-
priate assumption under the increasing domain asymptotics but
not under the fixed domain asymptotics. Theorem 4 can only
be applied to asymptotic normality under the framework of the
increasing domain asymptotics.

The number of iterations in Algorithm 1 is usually small,
because it is similar to the Newton-Raphson algorithm. For
instance, the glm function of R chooses 25 as the maximum
number of iterations. It stops the computation if the algorithm
does not converge within 25 iterations. Therefore, we only need
to study the properties of our method with a bounded number
of iterations. In this case, the difference between the results given
by our method and the results given by the h-likelihood method
vanishes as n → ∞, leading to consistency of our method.
This is Theorem 4. By the connection between the two methods,
we derive the variance-covariance matrix of our estimator. We
only state the theorem. The detailed formulation is displayed in
Appendix C, supplementary materials.

Corollary 1. Assume that Conditions (i), (ii), and (iii) of The-
orem 4 hold. If (iv) there exists α > 0 such that

∑n
i=1 E{[yi −

E(yi)]2+α]/[∑n
i=1 V(yi)]2+α → 0 as n → ∞, then the estima-

tor of β and ω provided by the PM, denoted by β̂PM and ω̂PM,
respectively, are

√
n-consistent, and their variance-covariance

matrix is the inverse of the Fisher information provided by the
likelihood function of (11).

Condition (iv) is the Lyapunov condition, which implies
the Linderberg-Feller condition for derivation of asymptotic
normality. The Lyapunov condition is the usual assumption
for asymptotic normality for dependent data. It generally holds
under the strong mixing condition. Therefore, Corollary 1
provides the asymptotic normality of the estimators under the
framework of the increasing domain asymptotics. This can
induce that the estimators of β and ω provided by the PM is
asymptotically equivalent to the true MLEs, which means that√

n times the difference between the estimator provided by the
PM and the true MLE goes to 0 in probability as n → ∞. We
summarize this by the following Corollary.

Corollary 2. If Conditions (i), (ii), and (iii) of Theorem 4 and
Condition (iv) of Corollary 1 hold, then

√
n(β̂ − β̂PM)

P→ 0 and√
n(ω̂ − ω̂PM)

P→ 0.
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2.3. Examples

We compare our method to three well-known SGLMMs:
the generalized geostatistical (GGEO) (Diggle, Tawn, and
Moyeed 1998), the generalized conditional autoregressive
(GCAR) (Cressie and Chan 1989), and the generalized spatial
autoregression (GSAR) (Ork 1975) models for count responses.
All of them can be applied to spatiotemproal data. It is enough
to display our method for spatial data only. We study the cases
when the count responses are binomial or Poisson due to their
popularity. We provide the initialization of z

β̃γ̃
and W

β̃γ̃
for

Step 1 of Algorithm 1.

Example 1 (GGEO). Let yi and xi be response and explanatory
variables collected at the ith site in a spatial or spatiotemporal
domain. The GGEO model is jointly defined by (3) and (4) with

�ω = (cω(dij)), i, j = 1, . . . , n, (15)

where dij is the distance between sites i and j. For purely spatial
data, dij is chosen as the Euclidean distance. For spatiotem-
poral data, dij is defined by a bivariate vector with the first
and the second components to be the spatial and temporal
distances, respectively. Because �ω must be positive definite,
parametric methods are used to specify it. Examples include the
Matérn (Matérn 1986) and the generalized Cauchy (Gneiting
and Schlather 2004) families in purely spatial case, and a number
of nonseparable families in the spatiotemporal case (Cressie
and Huang 1998; Gneiting 2002; Stein 2005). Because the PM
for SGLMMs and fitting methods for SLMMs are developed
independently, it is enough to display it based on the well-known
Matérn covariance family for spatial data only.

The Matérn covariance family specifies the variance-
covariance matrix between γ as

cω(dij) = ω1
(ω2dij)ω3

2ω3−1
(ω3)
Kω3(ω2dij) = ω1Mω3(ω2dij) (16)

with ω = (ω1, ω2, ω3)�, where Kδ3(·) is the modified Bessel
function of the second kind, and ω1, 1/ω2, and ω3 are
variance, scale, and smoothness parameters, respectively. The
Matérn family is isotropic in space. It becomes the exponential
covariance function when δ3 = 0.5. The family was first
proposed by Matérn (1986) and has received more attention
since some theoretical work of Handcock and Stein (1993) and
Stein (1999).

To fit the GGEO model, we only need an algorithm for the
GEO model for normal responses. The formulation of GEO is
identical to (19) in Appendix A, supplementary materials with
the variance-covariance matrix for γ specified by (16). We need
the first and second-order partial derivatives of �ω with respect
to ω. They have been worked out in the literature. For instance,
for ω2, we have

∂cω(dij)

∂ω2
= 2ω1ω3

ω2
[Mω3(ω2dij) − Mω3+1(ω2dij)]

and

∂2cω(dij)

∂ω2
2

= ω1

(
4ω2

3 − 2ω3

ω2
2

+ d2
ij

)
Mω3(ω2dij)

+ ω2(2ω3 − 4ω2
3)

ω2
2

Mω3+1(ω2dij).

The derivation of the first and second-order partial derivatives
of cω(dij) with respect to ω1 is trivial. It is omitted. The partial
derivatives of cω(dij) with respect to ω3 are rarely used in the
computation because the MLE of ω3 is often obtained by a
golden section search. Therefore, we can use Appendix A, sup-
plementary materials to fit the GEO model with Matérn covari-
ance functions. Combining it with Appendix B, supplementary
materials, we obtain the PM algorithm for the GGEO model with
the Matérn covariance function for count responses.

We then implement our method to GGEO for binomial or
Poisson data. For binomial data, we assume that yi ∼ Bin(mi, πi)
with log[πi/(1 − πi)] modeled by (3). At the beginning (i.e.,
Step 1) of Algorithm 1, we choose the ith components of z

β̃ω̃
as

z(0)
i = log[(yi+0.5)/(mi−yi+0.5)] and the ith diagonal entry of

W
β̃ω̃

as w(0)
i = mi(yi +0.5)(mi −yi +0.5)/(mi +1)2. Let β(t) be

the estimated value of β and γ
(t)
i be the predicted value of γi in

the tth iteration. We predict ηi by η
(t)
i = x�

i β(t)+γ
(t)
i , leading to

the (t +1)th iterated value of the ith component of z
β̃ω̃

as z(t)
i =

η
(t)
i + (yi −miπ

(t)
i )/[miπ

(t)
i (1−π

(t)
i )] and the (t +1)th iterated

value of the ith diagonal entry of W
β̃ω̃

as w(t)
i = miπ

(t)
i (1−π

(t)
i ),

where π
(t)
i = eη

(t)
i /(1 + eη

(t)
i ). We can carry out the next itera-

tion. The entire computation does not need initial guesses of β̃

and ω̃.
For Poisson data, we assume that yi ∼ P(λi) with log λi

modeled by (3). At the beginning (i.e., Step 1) of Algorithm 1,
we choose z(0)

i = log(yi + 0.5) and w(0)
i = yi + 0.5. Let

β(t) and γ
(t)
i be the tth iterated values of β̂ and γi, respectively.

We have z(t)
i = η

(t)
i + (yi − eη

(t)
i )/eη

(t)
i and wi = eη

(t)
i with

η
(t)
i = x�

i β(t) + γ
(t)
i , leading to the next iteration. The entire

computation does not need initial guesses of β̃ and ω̃ either.

Example 2 (GCAR). The GCAR model is proposed for
aggregated data (also called lattice data) with at-risk population
in spatial statistics. Suppose that a spatial or spatiotemporal
domain is partitioned into K units. Let yi and xi be the response
and explanatory variables associated with at-risk population size
ni from the ith units. The GCAR model is jointly defined by (3)
and (4) with �ω = ω1(I − ω2H)−1D, where ω = (ω1, ω2)

�, ω1
is the variance parameter, and ω2 is the spatial autocorrelation
parameter. To ensure �ω symmetric, we need to choose H =
(hij) with hij = aij(nj/ni)1/2 and D = diag(n−1

1 , . . . , n−1
K ),

where aij with aii = 0 is the (i, j)th entry of a symmetric
matrix (Cressie and Chan 1989).

To fit the GCAR model, we only need a method for the
CAR model for normal responses. The format of the model
is identical to (19) in Appendix A, supplementary materials
with the variance-covariance matrix for γ specified by �ω. We
need the first and second-order partial derivatives of �ω with
respect to ω. The first-order partial derivatives are ∂�ω/∂ω1 =
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(I−ω2H)−1D and ∂�ω/∂ω2 = ω1(I−ω2H)−1H(I−ω2H)−1D.
The second-order partial derivatives are ∂2�ω/∂ω2

1 = 0,
∂2�ω/∂ω2

2 = 2ω1(I − ω2H)−1H(I − ω2H)−1H(I − ω2H)−1D,
and ∂2�ω/∂ω1∂ω2 = (I −ω2H)−1H(I −ω2H)−1D. Therefore,
we can use Appendix A, supplementary materials to compute the
MLEs of β and ω in the CAR model. Combine it with Appendix
B, supplementary materials. We obtain the PM algorithm for the
GCAR model. The specification of the PM to the GCAR model
for binomial or Poisson responses is similar to that we have just
displayed for the GGEO model. We can use the same z(0)

i and
w(0)

i of Example 1 for the Poisson or the binomial data at the
beginning (i.e., Step 1) of Algorithm 1. We omit it.

Example 3 (GSAR). The GSAR model is also proposed for
aggregated data with at-risk population. It is jointly defined
by (3) with the distribution of γ given by γ = ω2Aγ + ε,
where ε ∼ N (0, ω1I), and A is a spatial weight matrix. Then, (4)
becomes �ω = ω1(I − ω2A)−1(I − ω2A�)−1, where ω =
(ω1, ω2)

�. To fit the GCAR, we only need a method for the
CAR model for normal responses. We need the first and the
second-order partial derivatives of �ω with respect to ω. They
are provided by matrix expression. We use Appendices A and B
to calculate the MLEs of β and ω in the GSAR model. We can
use the same z(0)

i and w(0)
i of Example 1 for the Poisson or the

binomial data at the beginning (i.e., Step 1) of Algorithm 1. The
detailed specification of our method to the GSAR for binomial
or Poisson responses is also omitted.

For spatiotemporal data, the total number of observations
is usually large. Large matrix approaches are often needed. To
implement the PM to spatiotemporal data, we only need an
efficient algorithm for normal responses. After it is derived, we
can easily modify it for count responses. Therefore, our method
provides a bridge to connect mixed effects models for normal
responses with those for nonnormal responses.

3. Simulation

We evaluated our proposed method (i.e., the PM) with the com-
parison to seven previous methods for the MLEs of SGLMMs.
The seven previous methods were the IRWLSR (Zhang 2021),
the PQL (Breslow and Clayton 1993), the LA (Evangelou, Zhu,
and Smith 2011), the PrevMap (Girogi and Diggle 2017), the
geoCount (Jing and Oliveira 2015), the geoRglm (Christensen
and Ribeiro 2002), and the INLA (Rue, Martino, and Chopin
2009). We classified the eight methods into two groups. The
likelihood-based group contained the PM, the IRWLSR, the
PQL, the LA, and the PrevMap methods. We treated the PQL
as a restricted maximum likelihood (REML) method, because
it is identical to the REML method for the SGLMM if the
response is normal. We treated the PM, the IRWLSR, and the
LA methods as the ML methods, because they are identical to
the ML method for the SGLMM if the response is normal. The
PrevMap was also treated as one of the ML methods because it
uses the Monte Carlo approach to approximate the likelihood
function with the parameter estimators derived by maximizing
the simulated likelihood function. The Bayesian group con-
tained the geoCount, the geoRglm, and the INLA methods.

Both the geoCount and the geoRglm use MCMC algorithms
to sample the posterior distributions of γ , β , and ω by the
Metropolis-Hasting approach with the Bayesian estimates of β

and ω derived by the posterior distributions. Following Jing and
Oliveira (2015), we generated 2200 MCMC samples in the geo-
Count and 50,000 in the geoRglm. Our simulation showed that
they were big enough to obtain the stable posterior distributions
from the MCMC. The computation of the geoCount was time-
consuming if more samples were used. This was why the authors
only used 2200 MCMC samples in the geoCount method. The
INLA is an approximate Bayesian method. It incorporates the
LA into MCMC for approximating the marginal distributions
of parameters of interests. The approximate Bayesian method is
carried out based on a mesh structure composed by less than 200
points in the domain. The INLA generated 2048 MCMC samples
based on the mesh. This makes the INLA more computationally
efficient than the usual MCMC algorithms.

We studied both increasing and fixed (i.e., infill) domain
asymptotics problems. We focus on the comparison under the
increasing domain asymptotics and simply mention that under
the fixed domain asymptotics. In the increasing domain asymp-
totics problem, we randomly generated n spatial sites from
square region [0,

√
n]2. In the fixed domain asymptotics prob-

lem, we randomly generated the locations from the squared
region [0, 10]2. After the sites were derived, we calculated the
Euclidean distance dij between the sites for i, j = 1, . . . , n. We
then generated data from the Poisson GGEO model with only
the intercept in its linear component, leading to the SGLMM in
our simulation as

log μi = β0 + γi, i = 1, . . . , n, (17)

where �ω was defined by the Matérn family given by (16). We
fixed ω3 = 0.5 in (17), such that the Matérn covariance function
reduced to the exponential covariance function as

cω(dij) = ω1e−ω2dij . (18)

Therefore, we had ω = (ω1, ω2)
�, where ω1 was the variance

parameter and 1/ω2 was the scale parameter. We used fixed β0 =
5.0, ω1 = 0.5, and ω2 = 1.00 and varied n = 100, 200, 400.
We reparameterize ω1 and ω2 for nugget effect formulations by
δ1 = ω1/(1 + ω1) and δ2 = ω2. We evaluated the performance
based on δ = (δ1, δ2). Therefore, the variance parameter was
ω1 = δ1/(1 − δ1) and the scale parameter was ω2 = δ2.

Following Jing and Oliveira (2015), we used the proper half-
t prior for ω1 and the proper uniform prior for 1/ω2 in the
geoCount. We selected the bounds of the uniform prior to
ensure that it contained the true ω2. We tried different bounds
and found that the results were similar. Then, we fixed the
lower bound at 0.1 and the upper bound at 10. In geoRglm, still
following Jing and Oliveira (2015), we used the proper scaled
inverse Chi-squared prior for the nugget parameter and also
the Uniform[0.1, 10] prior for the scale parameter. We also tried
other bounds and found that the changes could be ignored.
In INLA, we used the R code provided by Jing and Oliveira
(2015) to generate the mesh. We tried different options in the
generations and did not find any significant differences between
the options.

We also examined many other priors for the influence of the
prior distributions on the Bayesian methods. For the geoCount,
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Figure 1. Boxplot for the sample distributions (obtained from 1000 replications) of the 8 estimators (from the left to the right) from the proposed PM approach with the
comparison to the previous IRWLSR (IR), LA, PQL, PrevMap (Map), geoCount (gC), geoRglm (gR), and INLA approaches when data are generated from (17) with β0 = 5.0,
δ1 = 0.5, and δ2 = 1.0 in (18) for the increasing domain asymptotics problem.

we investigated the Inverse Gamma and Reciprocal priors for
ω1 and ω2, respectively. We found that the influences of prior
distributions on estimates of β0 were all less than 1%, of ω1
were mostly less than 5%, and of ω2 were mostly less than 20%.
For the geoRglm, we investigated the Flat, Normal, and Fixed
priors for β0, the Uniform, Scaled Inverse χ2

2 , Reciprocal, Fixed
priors for ω1, and the Uniform, Exponential, Fixed, Squared
Reciprocal, Reciprocal priors for 1/ω2, respectively. We found
that the influences on estimates of β1, ω1, and ω2 were all less
than 1%. For the INLA, we investigated various options of prior
distributions provided by the INLA package of R. We found that
the influences on estimates of β1 and ω1 were all less than 1%,
and of ω2 were mostly less than 15%. The selections of the prior
distributions did not significantly affect the performance of the
Bayesian methods.

We generated 1000 datasets from (17) for each selected
n. In each generated dataset, we implemented our proposed
PM by Algorithm 1 and the PQL and the LA methods by the
spaMM package of R. We implemented the PrevMap method
by the PrevMap packages of R. We implemented the previous
IRWLSR method proposed by Zhang (2021) by a modification
of Algorithm 1 to incorporate the dispersion parameter. We

implemented the geoCount, the geoRglm, and INLA methods
by the geoCount, geoRglm, and inla packages of R.

We first compared the performance of the eight methods by
looking at the sample distributions of the estimators. For each of
the methods, we calculated the estimates of β0, δ1, and δ2 using
the generated datasets. We obtained 1000 estimated values. We
plotted these and obtained the simulated sample distributions
(Figure 1). We found that the sampling distributions of the
IRWLSR, geoCount, geoRglm, and INLA were much wider than
those of the PM, LA, PQL, and PrevMap, implying that the
likelihood-based methods were more reliable than the MCMC
methods. We found significant biases in the MCMC approaches
when they were used to estimate the nugget and scale effects. The
results of the IRWLSR were not stable either, because it contains
the redundant dispersion parameter in its iterations.

We next compared the performance of the eight methods by
looking at their root mean squares errors (RMSE) values. The
RMSE values were obtained by the squared root of the average
of the MSE values from the 1000 replications. The result showed
that our proposed method was equally good as the PQL, LA, and
PrevMap methods (Table 1). The performance of likelihood-
based methods (i.e., the PM, the PA, the LA, and the PrevMap)
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Table 1. Comparison of the proposed PM and the previous IRWLSR (using R for both) with the LA, PQL, PrevMap, geoCount, geoRglm, and INLA (using C++ for all the six)
based on RMSE values obtained from simulations with 1000 replications generated by (17) when β0 = 5, δ1 = 0.5, and δ2 = 1.0 in the increasing domain asymptotics
problem.

n = 100 n = 200 n = 400

Method Minutes β0 δ1 δ2 Minutes β0 δ1 δ2 Minutes β0 δ1 δ2

PM 0.012 0.222 0.054 0.324 0.037 0.168 0.038 0.210 0.149 0.123 0.027 0.145
IRWLS 0.063 0.227 0.477 0.345 0.186 0.169 0.483 0.225 0.790 0.124 0.486 0.155

LA 0.021 0.223 0.054 0.325 0.067 0.168 0.038 0.210 0.360 0.123 0.027 0.146
PQL 0.011 0.223 0.054 0.324 0.035 0.168 0.038 0.209 0.237 0.123 0.027 0.146

PrevMap 1.446 0.262 0.059 0.377 2.067 0.167 0.037 0.222 5.011 0.121 0.028 0.152
geoCount 0.367 0.281 0.185 0.626 1.190 0.172 0.074 0.317 5.644 0.153 0.300 0.498
geoRglm 0.111 0.269 0.190 1.653 0.464 18.623 0.208 3.118 3.177 149.576 0.226 3.588

INLA 0.084 0.190 0.452 0.520 0.374 0.369 0.496 0.647 2.030 0.773 0.500 0.678

was generally better than that of the Bayesian methods (i.e., the
geoCount, the geoRglm, and INLA). We did not expect that the
performance of the IRWLSR could be as good as the PM, the LA,
the PQL, and the PrevMap because it contained the redundant
dispersion parameter in the computation. As n became large, the
RMSE of the estimator obtained from PM, the LA, and the PQL
decreased. The rates were approximately inversely proportional
to

√
n, indicating that the conclusion provided by Corollary 1

for the increasing domain asymptotics was precise. In addition,
we investigated the same issue for the fixed domain asymptotics
(not shown). We found that the RMSE did not significantly
reduce with n, implying that Corollaries 1 and 2 cannot be
applied to the fixed domain asymptotics.

We also evaluated the properties of the Fisher information
provided by the PM. In particular, we calculated sPM(δ̂1),
sPM(δ̂1), and sPM(δ̂2), the standard errors of the estimators
of β0, β1, and β2, by the Fisher information of the PM. We
computed the 95% Wald confidence intervals for β0, δ1, and δ2
by β̂0 ± 1.96sPM(β̂0), δ̂1 ± 1.96sPM(δ̂1), and δ̂2 ± 1.96sPM(δ̂2),
respectively. Theoretically, we need to choose β̂0, δ̂1, δ̂2 as
the estimators of β0, δ1, and δ2 provided by the PM only. To
understand the impacts of the Fisher information more deeply,
we extended the corresponding formulations by choosing
those as the estimators provided by all of the eight methods,
respectively. For each of the eight methods, we compared the
coverage probabilities of the confidence intervals. The coverage
probabilities were derived by the proportions for the confidence
intervals to contain the true parameters (Table 2). Our result
showed that the coverage probabilities of the confidence
intervals provided by the PM, the LA, the PQL, and the PrevMap
were all close to 95%, indicating that the standard errors
provided by the PM can be extended to all of the three methods.
Because we did not find this phenomenon in the IRWLS,
geoCount, geoRglm, and INLA, we concluded that the standard
errors provided by the PM cannot be extended to the four
methods. Due to the bias of the MCMC methods, the coverage
probabilities of the 95% confidence intervals were also low when
the standard errors were calculated by their posterior samples.

We compared the difference between the proposed PM with
the previous IRWLSR. In each iteration of the IRWLSR, it uses
an SLMM for normal responses to update the estimates of
parameters. The SLMM contains a dispersion parameter for
the variance of random errors. The proposed PM removes the
dispersion parameter in its iterations by assuming that the dis-
persion parameter is equal to 1. The dispersion parameter is not
present in the SGLMM but it is used in the iterations of IRWLSR.

Table 2. Comparison of the coverage probabilities of the 95% confidence intervals
provided by the estimators of the eight methods with the standard errors given by
the Fisher Information of the PM from simulations with 1000 datasets generated
by (17) when β0 = 5, δ1 = 0.5, and δ2 = 1.0 in the increasing domain asymptotics
problem.

n = 100 n = 200 n = 400

Method β0 δ1 δ2 β0 δ1 δ2 β0 δ1 δ2

PM 0.916 0.924 0.936 0.916 0.924 0.936 0.916 0.924 0.936
IRWLSR 0.910 0.001 0.941 0.910 0.001 0.941 0.910 0.001 0.941

LA 0.915 0.924 0.936 0.915 0.924 0.936 0.915 0.924 0.936
PQL 0.915 0.925 0.950 0.915 0.925 0.950 0.915 0.925 0.950

PrevMap 0.912 0.932 0.925 0.924 0.934 0.918 0.924 0.951 0.938
geoCount 0.865 0.245 0.473 0.865 0.245 0.473 0.865 0.245 0.473
geoRglm 0.864 0.316 0.000 0.864 0.316 0.000 0.864 0.316 0.000

INLA 0.842 0.000 0.666 0.842 0.000 0.666 0.842 0.000 0.666

This causes serious biases in the estimates of δ1, leading to
low coverage of the IRWLSR for δ1. This issue is solved by the
proposed PM.

We then studied the prediction performance. As the pre-
diction of γ was available in the PM, we quickly obtained the
predicted value of the responses by ŷi = exp(β̂0 + γ̂i), where γ̂i
was the predicted value of γi. We looked at two quantities. The
first was the relative total variation (RTV) of the random effects
not explained by the model defined as NRTV = ∑n

i=1(γ̂i −
γi)2/

∑n
i=1 γ 2

i . The second was the deviance coefficient of deter-
mination for the reduction of deviance goodness-of-fit (GOF)
statistic explained by the model. The formulation was R2 =
(G0 − G2)/G2

0, where G2 = ∑2
i=1 yi log(yi/ŷi) was the deviance

GOF statistic for (17) and G2
0 was that for the null model with β0

only. For the PM, we found that all of the values of NRTV were
less than 0.001 and all of the values of R2 were greater than 0.99,
indicating that the prediction was precise. To compare, we also
used spaMM to calculate the prediction of γ and β . We found all
of them were close to that provided by the PM. The differences
were less than 0.1%. This also occurred in the PrevMap method.
In addition, we implemented the same approach to evaluate the
prediction performance of the MCMC methods. For all of the
geoCount, the geoRglm, and the INLA, the values of NRTV
were only slightly larger than 0.001, which was still small. All
of the values of R2 were still higher than 0.99, indicating that the
prediction of the MCMC methods was still precise. Therefore,
we conclude that although MCMC was not stable in estimation,
it can still provide nice predictions of the random effects and the
responses.

In the end, we compared the computational times of the eight
methods. We obtained the computational times by the average
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Figure 2. Locations of weed samples (marked by *) and the contour plot for the predicted weed counts given by the PM. We only display those given by the PM because
they are almost identical to those given by the PQL and the LA.

minutes in the 1000 replications. Our results showed that the
likelihood-based methods were generally more computation-
ally efficient than the MCMC methods, and the geoCount was
the slowest. Therefore, we conclude that the likelihood-based
methods are more computationally efficient than the MCMC
methods. The advantage of the PM is that we do not need any
numerical evaluation of HDIIs. Thus, it is more convenient than
its competitors. In the comparison, the implementations of the
PM and the IRWLSR were based on their R code, respectively.
The implementations of all of the other six methods were based
on their C++ code, respectively, where R is only a platform. As it
has previously pointed out that R can be 500 times slower than
C++ (Aruoba and Fernandez-Villaverde 2015), it is enough for
us to conclude that the proposed PM and the previous IRWLSR
are more computationally efficient than the other six methods.
Therefore, the PM has more computational advantages than its
competitors.

4. Application

We implemented our method with the comparison of our com-
petitors to the Weed dataset. The Weed dataset was previously
analyzed by Guillot, Lorén, and Rudemo (2009) using the spatial
Poisson-lognormal model, which was identical to (17). It was
also previously analyzed by many other authors using various
methods, including the Bayesian method adopted by Chris-
tensen and Waagepetersen (2002).

Because collecting exact weed counts in agricultural fields
is expensive and time-consuming, statistical analysis methods
are recommended for predicting weed counts to reduce the cost
at an appropriate level. To fulfill the goal, the Weed dataset
was collected at the Bjertorp farm located 58.26◦N and 13.13◦E
in the south-west of Sweden. The size of the farm was about
30 hectares. The data were collected from 100 sites with exact

Table 3. Estimates of model parameters for (17) in the Weed dataset by the PM,
IRWLSR, PQL, PrevMap, LA, geoCount, geoRglm, and INLA methods under (17) with
�ω is given by (18).

β0 ω1 1/ω2

PM 4.080 0.894 70.20
PQL 4.080 0.918 70.45
LA 4.069 0.917 70.44

PrevMap 4.068 0.920 70.18
geoCount 4.169 1.424 62.87
geoRglm 4.119 1.374 111.33

INLA 4.072 1.070 45.02

counts of noncrop plants. The size of the sites was given by a
0.5m × 0.75m frame. The locations of the sites are displayed in
Figure 2 (marked by *).

We analyzed the Weed dataset by the PM, the LA, the
PQL, the PrevMap, the geoCount, the geoRglm, and the INLA
under (17) with �ω given by (18) (Table 3). We excluded the
IRWLSR method because it contains a redundant dispersion
parameter in its iteration but it is not present in the model. We
treated the LA as ML methods because it uses the approximate
expression of the likelihood function to estimate the parameters.
We also treated the PrevMap as an ML method because it uses
Monte Carlo method to approximate the likelihood function.
We treated the PrevMap as an approximate ML method because
it uses the Monte Carlo approach to approximate the likelihood
function. Therefore, we had four likelihood-based methods.
They were the PM, the LA, the PQL, and the PrevMap. The
remaining three, which were the geoCount, the geoRglm, and
the INLA, were treated as Bayesian methods, because they used
the MCMC.

The results given by the likelihood-based methods were close
but the results given by the Bayesian methods were not. The
estimates of the intercept parameter (i.e., β0) in all of the seven
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Figure 3. Plots of 2{�P(ω3) − max[�P(ω3)]} in our proposed PM and the LA methods. Because the plot in the PQL is almost identical to that in the LA, it is not contained.

methods were close. The estimates of the variance parameter
(i.e., ω1) were a little bit different. Significant differences were
found in the estimates of the scale parameter (i.e., 1/ω2) in the
Bayesian methods. The largest one given by geoRglm was higher
than those given by the likelihood methods. The lowest one
given by the INLA was lower than those. Thus, we concluded
that results given by the likelihood-based methods were more
reliable than those given by the Bayesian methods or the MCMC
algorithms. We also studied the prediction performance of the
methods. We then predicted the random effects at unobserved
sites. We used those to predict the response at all the sites in
the study region. We obtained the contour plot in Figure 2 by
the PM. We also computed ŷ at the observed sites. We used it
to calculate the G2 value of the model. We compared it with
G2

0, the deviance GOF value of the null model (i.e., the model
without γi in (17)). We had G2 = 9.70 and G2

0 = 4506.9,
leading to the deviance coefficient of determination as R2 =
1−G2/G2

0 = 0.998 from the PM. In addition, we had G2 = 9.73
from the PQL and G2 = 9.63 from the LA. This means that all
of the likelihood-based methods well explained the variations of
the weed counts. We also studied similar issues for the MCMC
methods. The result showed that their G2 values were still low
and their R2 values also close to 1. This means that the MCMC
methods also well explained the variations of the responses.

To assess whether we could assume ω3 = 0.5 in (16), we
studied the likelihood-based methods with a varied ω3. Theo-
retically, it was a profile likelihood approach because we fixed ω3
at each candidate value and estimated all of the rest parameters.
We put the estimates of those parameters in the log-likelihood
function and obtained the profile log-likelihood function of ω3,
denoted by �P(ω3) (Figure 3). We estimated ω3 by maximizing
�P(ω3). We obtained ω̂3 = 0.82 in our method and ω̂3 = 0.80 in
the PQL and the LA methods. Because the differences between
�P(ω̂3) and �P(0.5) were not higher than χ2

0.05,1 = 3.84, we

accepted the null hypothesis in the test for H0 : ω3 = 0.5
against H1 : ω3 �= 0.5. We concluded that the true ω3 was
not significantly different from 0.5 and it was appropriate to use
ω3 = 0.5 in the computation. Thus, the results given by Table 3
were appropriate.

5. Discussion

In this article, we propose a new method called the PM algo-
rithm for MLEs of SGLMMs for count responses. The imple-
mentation of our method does not need any numerical eval-
uations of HDIIs contained by the likelihood functions of the
models. It only needs a numerical algorithm for MLEs of SLMMs
for normal responses and prediction of the random effects under
the MLEs. If the MLEs are derived, then the prediction of the
random effects can be easily carried out by matrix operations.
This means that the computation of MLEs in SGLMMs for
count responses is not harded than the computation of MLEs
in SLMMs for normal responses. It is not necessary to develop
specific algorithms for MLEs in SGLMMs for count responses.
High-dimensional integrals are not issues in the computation
of MLEs of SGLMMs for count responses. As an SLMM for
normal responses contains the dispersion parameter but an
SGLMM for count responses does not, we cannot directly use
established fitting procedures to implement the PM. Therefore,
new algorithms without the dispersion parameter are needed.

Mathematically, the PM is simpler than the previous LA and
PQL. Although all of the purposes are the computations of
the MLEs of SGLMMs, the LA and the PQL use higher-order
(e.g., the third and the fourth order) moment expressions. The
goal is to reduce the asymptotic bias. The PM does not have
an asymptotic bias. It does use higher-order moments in its
mathematical formulations either. It is asymptotically equivalent
to the true MLE. Thus, the properties of the PM are nice. The PM
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can be easily extended to any generalized mixed effects models
for counts.

Our method successfully reduces the computational com-
plexity for MLEs in SGLMMs for count responses to that for
normal responses. Given that an algorithm for MLEs in a specific
SLMM exists, we can modify it to a method for MLEs in the cor-
responding SGLMMs for count responses. Therefore, it is more
important to develop efficient algorithms for SLMMs. This kind
of problems has not been completely solved yet. An example
is the spatial or spatiotemporal model with a large number of
observations. Because the size of the variance-covariance matrix
of the random effects is large, it is generally impossible to load
the entire matrix to memory of a computing system, leading
to a difficulty in computing the inverse and the determinant
of the variance-covariance matrix. This kind of problems has
been previously studied by many articles (Fuentes 2007; Cressie
and Johannesson 2008; Kaufman, Schervish, and Nychka 2008;
Liang, et. al 2013; Eidsvik, et. al 2014) for normal responses.
Our research indicates that the corresponding methods can be
modified to count responses. Therefore, our research provides a
pathway to connect SGLMMs for count responses with SLMMs
for normal responses. This is left to future research.

Supplementary Materials

The online supplementary materials contain the standard MLEs for spa-
tial linear mixed models (SLMMs) for normal data, and the prediction
of random effects based on the SLMMs, the formulations of the Fisher
information matrix for the MLEs of the SLMMs, and the proofs of all of
the lemmas, theorems, and corollaries.
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